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Abstract

We present the octant flux splitting DSMC method as an efficient method for simulating non-equilibrium flows of rar-
efied gas, particularly those arising from thermal loading. We discuss the current state-of-the-art flux splitting IP-DSMC
technique and show that it fails to capture the shear stresses created by thermal gradients. We present the development of
the octant flux splitting IP-DSMC as well as degenerate 2D, 1D, and 0D forms and apply the method to a number of prob-
lems including thermal transpiration, with satisfactory results.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A number of interesting phenomena may occur in the presence of thermal loading in a rarefied gas. In 1825,
Fresnel noticed that small bodies suspended in a gas would sometimes move when exposed to light—
something later studied in detail by Crookes and others using a variety of the now familiar radiometers [1].
In 1879, Osborne Reynolds gave the name thermal transpiration to the effect he observed wherein gas was
pumped through capillaries or porous plugs subject to a temperature gradient. In that same year, James Clerk
Maxwell proposed a theoretical explanation for the mechanism of both thermal transpiration and the radio-
metric effect [2]. Recently, a number of micro- and nanoscale systems have sought to leverage thermally driven
rarefied gas dynamic phenomena for pumping [3–6], propulsion [7] and sensing [8]. Although the physical
mechanisms are understood, detailed modeling of such systems is complicated by the difficulty involved in
modeling low-speed non-equilibrium rarefied gas systems.
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The degree of rarefaction of a gas is quantified by the Knudsen number which is the ratio of the mean free
path between intermolecular collisions (k) and some characteristic length, L, of the flow; i.e., Kn = k/L. At
small Kn, the intermolecular collisions dominate – resulting in a diffusive nature that can be accurately
described by continuum models, e.g., the Euler and Navier–Stokes equations [9,10]. At larger Kn, either
due to decreasing densities (and correspondingly larger mean free paths) or smaller characteristic lengths,
the contribution of intermolecular collisions will diminish until conservation equations cease to form a closed
set at Kn > 0.1 and the continuum description breaks down [9]. Within the transition regime, 0.1 < Kn < 10,
intermolecular collisions remain important – but not dominant – and the molecular nature of the gas must
be considered. Finally, the free molecular regime, Kn > 10, is characterized by extremely rare intermolecular
collisions and ballistic transport.

The fundamental equation describing the molecular nature of gases is the Boltzmann transport equation
(BTE). One method of solving the BTE is a direct mathematical approach using distribution functions as
the primary variables. However, the solution of the complete BTE has proven very difficult, requiring signifi-
cant computational expense evaluating distributions and collision integrals. This has led to the development of
various linearized models and simplified collision integrals (BGK, S-model, etc.) suitable for a range of slightly
non-equilibrium problems [11]. An alternative approach is to model the behavior of the individual molecules
directly, leading to a molecular dynamics (MD) approach. However, the large number of molecules (and the
associated computational expense) required to adequately model a dilute gas precludes the MD approach.
The direct simulation Monte Carlo largely overcomes this difficulty by using simulation molecules, each repre-
senting a large number of real molecules. This has the additional advantage that collisions—partners and post-
collision behavior—may be treated in a probabilistic sense for further computational efficiency [9].

Although the DSMC has been used to model a number of thermally driven problems, including transpira-
tion [6], such problems typically require a large number of samples. Low-speed flows, common in both small-
scale devices and thermally driven systems, pose a particular challenge to efficient DSMC simulation as a large
number of samples are required to control statistical noise. For example, air at standard temperature and pres-
sure (STP) is composed of a myriad of molecules, each with velocities on the order of 500 m/s which are essen-
tially independent of the stream velocity. A DSMC simulation of a 1 m/s flow of air at STP would require over
8 · 106 independent samples to resolve the stream velocity within 1% [12].

The slow convergence of the DSMC simulations of low-speed flows has motivated the development of spe-
cialized DSMC techniques. Pan et al. proposed a DSMC method which split the molecular velocities into two
parts: thermal and flow. By considering only the flow component in sampling they succeeded in reducing scatter
for certain isothermal flows [13]. In a subsequent paper, Pan et al. [14] developed a block model suitable for non-
isothermal flows wherein ‘‘big molecules’’ with modified masses and collision cross sections are used to replace
the conventional simulation molecules. However, as pointed out in [30], the molecular block model doesn’t pre-
serve the same flow conditions and thus is not accurate. Chun and Koch recently proposed a heavily modified
DSMC which adds ‘‘ghost’’ molecules and variable weighting of particles during collisions and sampling [15].

The obvious similarity in all of these methods is to separate the information due to thermal energy from
that associated with the stream velocity. The information preserving DSMC (IP-DSMC), originally proposed
by Fan and Shen, is another such method that achieves variance reduction by storing and propagating certain
collective quantities (information) with each simulation molecule [16]. If we consider each simulation (DSMC)
molecule to be a representative sample from a large set of real molecules (i.e., with a position and velocity that
an individual real molecule could have), then the preserved (IP) quantities may be interpreted as approxima-
tions of the collective, or macroscopic, information of the ensemble of real molecules represented by the sim-

ulation particle. Within the simulation, preserved quantities are propagated by particle motion (DSMC
velocity) and sampled to obtain the macroscopic averages for the ensemble of particles within the computa-
tional cells. The resulting samples reflect the reduced noise in the preserved quantities.

The initial IP-DSMC model presented by Fan and Shen preserved only the velocity, which proved adequate
for the isothermal channel flow they considered [16]. Subsequently, the IP-DSMC has been extended to treat
more general flows by preserving additional quantities—density and temperature—and by various models for
the transport and conservation of mass, momentum, and energy [17–22]. In all cases, an update step accounts
for the effects of mass, momentum and energy transport not captured by simulation particle movement. The
early development of these IP-DSMC update techniques, as reported in the literature, has been somewhat ad
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hoc, beginning with the intuitive formulation for the acceleration of the gas due to pressure gradients [18,23].
For non-isothermal flows, the transport of energy must be treated carefully and several methods have been
proposed with varying degrees of success and applicability, including: modified collision cross-sections [18],
the introduction of ‘‘additional energies’’ to molecules migrating between cells [20], and fluxal terms derived
from kinetic theory [19,21]. Recently, Sun and Boyd derived update equations that provide a formal connec-
tion between the preserved quantities and Maxwell’s equation of change and proposed two models to com-
plete the update formulae, namely the local thermal equilibrium (LTE) and flux splitting (FS) methods
[22]. To date, the flux splitting IP-DSMC technique appears to be the most accurate and generally applicable
of the IP-DSMC techniques.

The performance and accuracy of the various IP-DSMC techniques has been demonstrated with satisfac-
tory results through a number of benchmark problems including Poiseuille, Rayleigh, and thermal and veloc-
ity Couette flows, as well as shock structure problems in argon gas [20,22]. In this paper, we are interested in
applying IP-DSMC techniques to low-speed thermally driven flows, e.g., thermal transpiration. In doing so,
we will show that the current (flux splitting) IP-DSMC methods cannot adequately model such flows. We will
present the development of an ‘‘Octant’’ flux splitting IP-DSMC (or OSIP-DSMC) technique for efficient
modeling of low-speed non-equilibrium rarefied gas flows, especially those arising from thermal loading.

The balance of this paper is organized as follows: Section 2 a brief review of the current state-of-the-art IP-
DSMC methods; Section 3 a description of thermal transpiration and IP-DSMC modeling. The failure of the
flux splitting method leads to the development of the Octant Splitting IP-DSMC presented in Section 4. Sec-
tion 5 reports on the results of benchmark problems as well a few example problems, including thermal tran-
spiration in a microchannel and thermal cavity problems. Finally, we present our conclusions in Section 6.

2. Review of current IP-DSMC methods

In the DSMC, each simulation molecule represents a large number, FN, of real molecules such that a set of
M simulation molecules represents M Æ FN real molecules. Each of these simulation molecules has a mass, m,
corresponding to the molecular mass of the species being modeled and position, x, and velocity, c, consistent
with the spatial location and microscopic velocities, n, of the real molecules. The simulation molecules are then
allowed to move within the computational domain: interacting with boundaries as appropriate and with other
simulation molecules through a probabilistic treatment of collisions. Macroscopic quantities are obtained by
averaging the microscopic velocities and densities of the simulation molecules. The IP-DSMC supplements the
DSMC velocity and position with certain preserved quantities that represent the collective, or macroscopic,
properties of some large set of ‘‘real’’ molecules that could be represented by the simulation molecule. Thus,
the preserved velocity, V, represents the average velocity of these ‘‘real’’ molecules, i.e., V ¼ �n. The preserved

temperature, TIP, represents the energy associated with the thermal velocities of these ‘‘real’’ molecules relative

to the preserved velocity, i.e., T IP ¼ ðn2 � V 2Þ=R, where R is the gas constant for the species. The preserved
density, qIP is usually treated on a cell basis. Macroscopic quantities are obtained by averaging the IP quan-
tities of the simulated molecules within each cell.

As in Ref. [22], Maxwell’s equation of change may be used to evaluate the transport of IP quantities as
shown:
oðnmÞ
ot
þr � ðnmV Þ ¼ 0; ð1Þ

oðnmVÞ
ot

þr � ðnmcVÞ ¼ �r � ðnmc0c000Þ; ð2Þ

o

ot
ðnmðV 2 þ 3RT IPÞÞ þ r � ðnmcðV 2 þ 3RT IPÞÞ ¼ �r � ðnmc0ðV 2 þ 3RT IP � c2ÞÞ; ð3Þ
where n is the number density, m is the molecular mass, c 0 = c � c0 is the peculiar velocity, c0 ¼ �c ¼ V is the
stream velocity, and c000 = c � V. The second terms on the left-hand side of Eqs. (2) and (3) are convective
terms, corresponding to the changes in the IP quantities due to microscopic movement of simulation mole-
cules. The right-hand side in Eq. (2), contains the so-called momentum ‘‘correlation coefficient’’ from Ref.
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[22], and acts as a force resulting from the gradient of the stress tensor. In the case of uniform flow (i.e., V = c0

for each simulation molecule), it is easy to show that this term is equal to r � r. For this reason this term may
be referred to within this paper as the ‘‘pseudo force’’ and nmc0c000 as the ‘‘pseudo stress tensor.’’ Similarly, the
right-hand side in Eq. (3), nmc0ðV 2 þ 3RT IP � c2Þ, acts as a heat flux and may be referred to as the ‘‘pseudo
heat flux.’’

Notice that the form of the pseudo stress ðc0c000Þ differs from that proposed by Sun and Boyd ðc000c0Þ in Ref.
[22]. The familiar stress tensor, rij ¼ c0ic

0
j, may be interpreted as the transport of the jth component of specific

momentum in the ith direction. The preserved pseudo stress must be consistent with this interpretation, i.e.,
ci Vj is the transport of the jth component of preserved specific momentum (Vj) transported in the ith direction
by the underlying DSMC velocity (ci). Thus, Eqs. (1)–(3) describe the evolution of the preserved quantities as a
result of particle movement and the pseudo force and pseudo heat flux acting on the cell.

An additional benefit of this corrected formulation is that it is now possible to derive workable formulae for
the IP viscous stress and heat flux in terms of mixed samples of the correlation coefficients and the microscopic
(DSMC) quantities of the ensemble of simulation molecules within a given computational cell:
rij ¼ qciV j þ qc0ic
000
j � qc0ic0j; ð4Þ

qi ¼
q
2
ðciðV 2 þ 3RT IPÞ � c0iðV 2 þ 3RT IP � c2ÞÞ � c0iðV 2 þ 3RT IPÞ
h i

� rijc0j; ð5Þ
where ciV j and ciðV 2 þ 3RT IPÞ are mixed terms, (i.e., sampling combinations of DSMC and information pre-

serving quantities), c0ic
000
j and c0iðV 2 þ 3RT IP � c2Þ are the correlation coefficients, and c0 may be replaced by V.

These formulae may be used in place of less efficient methods which sample only those particles which cross
cell boundaries within a given timestep [20].

Two components are still required: a model for intermolecular interactions that distributes mass, momen-
tum, and energy appropriately between collision partners in a conservative manner; and a means of evaluating
the pseudo stress and pseudo heat flux in terms of the available information. While the collision model
deserves further study, the phenomenological collision model proposed by Sun and Boyd has been shown
to perform quite well [20,22] and will be used in this study.

Sun and Boyd showed that the correlation coefficients can be expressed in terms of moments of velocity
distribution functions and proposed two distribution models for these: the local thermal equilibrium (LTE)
and flux splitting (FS) [22]. The LTE model assumes that the velocity distribution function of each particle
follows a Maxwellian, or equilibrium, distribution. The FS approach splits the particles into classes depending
on their microscopic (DSMC) velocities and evaluates the correlation coefficients by taking moments of the
half-Maxwellian distributions that are assumed to describe the velocity spaces of each of the associated split-
ting classes. The results of thermal Couette flow simulations led Sun and Boyd to determine that the Flux
Splitting model was the superior method and subsequent simulations for shock structures in argon used only
the FS model [22]. They also note that their previous ‘‘additional energy’’ method is a special case of the FS
model. Later in this paper we will show that the LTE and FS methods are closely related and that the success
of a correlation coefficient model depends on its ability to capture the directional non-equilibrium—or modal-
ity—of the velocity distributions.

3. Thermal transpiration

A brief explanation of the mechanism producing thermal transpiration, as well as thermal creep and the
radiometric effect, will be presented here, as it is pertinent to subsequent derivations. Consider a system
wherein two volumes of gas are maintained at the same initial pressure but dissimilar temperatures and joined
by a tube of some length. If the width of the tube is large in comparison to the mean free path of the gas (small
Kn) then the gas will diffuse through the tube preserving a uniform pressure but establishing a thermal gradient
within the tube. If the tube is narrow, such that the Knudsen number is significant, then molecules will ‘‘creep’’
through the tube from the cold to the hot reservoir. If the reservoirs are sealed, the result will be a static pres-
sure gradient, if they are open then the result will be a continuous transport—or pumping—from the cold to
the hot reservoir.
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The ‘‘creep’’ mechanism may be explained as follows. Molecules encountering the walls of the tube impart
momentum to the wall in normal and tangential directions. Perfectly elastic collisions with a smooth wall
would result in the molecule leaving the wall with the same tangential momentum but with reversed normal
momentum. Such collisions are very unlikely in real systems and the post-collision momentum of the molecule
is largely a function of the temperature of the wall—conforming to some thermal velocity distribution. The
average tangential momentum of particles leaving the wall from a given point is zero while the molecules arriv-
ing from ‘‘hot’’ regions will tend to have higher velocities than molecules arriving from ‘‘colder’’ regions. The
result is a shear force acting on the wall due to the greater momentum imparted by ‘‘hot’’ molecules than by
‘‘cold’’ ones and a reaction shear stress acting on the gas oriented toward the ‘‘hot’’ region. This produces a
creep flow near the wall in the direction of the thermal gradient, transporting gas from cold to hot. In the tran-
sition regime, the creep flow may eventually be balanced by reverse Poiseuille flow driven by the induced pres-
sure gradient.

As previously mentioned, many experimental observations of thermal transpiration have been reported
[24,25] as well as practical application of the effect in Knudsen pumps and micropropulsion systems [4–
7,24]. From a modeling standpoint, a number of different techniques have been proposed, including various
solutions of the linearized Boltzmann transport equation (BGK, S-model, etc.) [26,27], near continuum slip
models [10,28], and DSMC simulations [6]. Linearized BTE methods are suitable for problems with small ther-
mal gradients, i.e., weakly non-equilibrium, but are likely inadequate for the complex geometries and large
thermal gradients that may be encountered in micro- and nanoscale systems. Near continuum models are only
applicable for a small range of flow conditions. With this in mind, we want to simulate strongly non-equilib-
rium thermally driven systems with the IP-DSMC—leveraging the flexibility of the DSMC while avoiding the
computational expense usually associated with low-speed flows.

3.1. Flux splitting flow simulation of thermal transpiration

The problem we will consider in this work is a sealed 2D microchannel with a rectangular cross section and
geometry suitable for MEMS applications as shown in Fig. 1. It should be noted that although we consider 2D
problems in this paper, the techniques presented here are equally applicable to 3D simulations. The two ends
of the channel are maintained at two different temperatures T1 < T2 (T1 = 273 K and T2 = 573 K). The tem-
perature of the side walls varies linearly along the length of the channel and the working gas (Argon) is initially
in thermal equilibrium with the walls (i.e., T ðx; yÞ ¼ ðT 2 � T 1Þx=Lþ T 1Þ and at a uniform pressure of one
atmosphere, i.e., P(x,y) = P = 1 atm. The walls are modeled as fully accommodating and the out-of-plane
height (H) is assumed be much larger than the width (W), allowing the simplification to two dimensions. This
reduces the problem size to one that may be performed using a desktop workstation. The channel is discretized
using 200 cells along the length and 40 along the width with an average of 100 particles per cell.

3.2. Failure of flux splitting model

Fig. 2 presents the pressure distributions along the length of the microchannel as modeled by the DSMC
and the flux splitting IP-DSMC. While the DSMC solution predicts a static pressure gradient
(P1 = 100.110 kPa, and P2 = 103.688 kPa) as expected, the FSIP-DSMC results are quite disappointing, with
little change from the initial pressure distribution. Furthermore, the velocity field predicted by the DSMC
begins to exhibit the anticipated recirculatory flow, with creep flow moving from cold to hot along the bound-
aries and a central pressure driven flow in the opposite direction (see Fig. 10). The flux splitting IP-DSMC
velocity field (not shown) is essentially stationary.
T1 T2

L=5µm
w

Fig. 1. Diagram of 2D thermal transpiration microchannel. Channel widths (w) used in this study are 1 lm, 100 nm, and 20 nm.



Fig. 2. Comparison of flux splitting and DSMC pressure distribution results for 5 lm · 1 lm thermal transpiration microchannel.
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To understand the inability of the flux splitting IP-DSMC to correctly model thermal transpiration—and
hopefully identify a correction—we must look closely at the pseudo stress tensor. In the FS approach, the
pseudo stress tensor, c0c000, of a particle is evaluated by integrating the Maxwell–Boltzmann distribution over
the half-space determined by the splitting direction [22]:
c0kc000j ¼
b3

p3=2

Z Z Z
ci}ai

ðck � c0kÞðcj � V jÞe�b2ðc�VÞ2 dc ¼
1�

K
erfðbðV k�akÞÞ

� �
4b2 �K ðc0j�ajÞe�b2ðV k�ak Þ2

2
ffiffi
p
p

b ; j ¼ k

0; j 6¼ k

8><
>: ð6Þ
where the splitting direction and the limits of integration are determined by comparing the DSMC velocity c

for this particle to some splitting velocity, a, such that the limits of integration are defined for each ith dimen-
sion of the integrals in Eq. (6) as
ci}ai ¼
�1 !1; i 6¼ k;

ai !1; ci > ai

�1 ! ai; ci < ai

� ���� i ¼ k:

8<
: ð7Þ
The terms �
K

and �K indicate sign (or operator) changes based on the splitting in the kth direction (ck > ak or
ck < ak, respectively). b = (2RT)�1/2 is the inverse of the most probable speed. The pseudo stress terms, c0c000,
for each splitting direction are averaged over the particles in each splitting class and added together to con-
struct the complete tensor. As may be seen from Eq. (6), the pseudo stress tensor, c0c000, obtained from the flux
splitting method, is a strictly diagonal tensor—with the ‘‘pressure’’ terms along the diagonal. When used in the
update step, it results in a purely pressure driven flow. In the thermal transpiration problem, the net shear
stress, i.e., the net transport of tangential momentum, in the real gas is nonzero in regions adjacent to the wall
as a result of the temperature modality existing in the gas molecules. As previously discussed, this shear stress
drives the creep flow. It is apparent from this numerical experiment and the preceding analysis that the flux
splitting method has no mechanism for recovering the effect of temperature modality on shear transport
and is thus incapable of modeling thermal transpiration.
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4. Octant splitting method

In a non-equilibrium system, the velocity distribution of particles in a local region (or computational cell) is
asymmetric. The FS approach considers certain directional biases in the velocity distribution function of the cell
by using half fluxes, i.e., distinguishing in-flow and out-flow of momentum and energy with respect to the coor-
dinate directions. However, the FS method only splits along the direction of momentum transport when calcu-
lating the components of the correlation coefficients in that direction. In the directions perpendicular to the
splitting direction, the velocity distribution function used to evaluate the correlation coefficients is assumed to
be symmetric (i.e., the limits of integration are�1!1). As such, no shear can ever be produced. Considering
the need to preserve the direction dependent non-equilibrium for all components of the pseudo stress, it seems
logical to split the particles into more classes. Thus for a problem of N dimensions there will be 2N splitting direc-
tions: two half spaces in 1D, four quadrants in 2D and eight octants in 3D. Although we are currently considering
a 2D system, the following derivation is for the general 3D case. Thus for the octant method, each simulation
molecule is classified as belonging to one—and only one—octant based on its microscopic DSMC velocity rel-
ative to some splitting velocity a (in practice the stream velocity for the cell a ¼ c0 � V is used). As in the flux
splitting method, the Maxwellian distribution function is used as the basis for the split distribution function
assumed for each simulation molecule, but the limits of integration reflect the new splitting scheme. Specifically,
the limits in the kth dimension are dependent on the splitting direction for the kth velocity component, i.e.,
Sk ¼
ak !1 if ck > ak;

�1! ak otherwise;

�
ð8Þ
yielding the following integration
c0kc000j ¼
b3

p3=2

Z Skþ

Sk�

Z Sjþ

Sj�

Z Siþ

Si�

ðck � c0kÞðcj � V jÞe�b2ðc�VÞ2 dc; ð9Þ
where Sk� and Sk+, etc. represent the upper and lower bounds of Sk, etc. defined in Eq. (8) and the argument
of the exponential, �b2(c � V)2, retains the matrix notation for brevity. Integrating Eq. (9) (and exchanging
indices i and k), yields:
c0ic
000
i ¼ 1�

J
erfðbðV j � ajÞÞ

� �
1�

K
erfðbðV k � akÞÞ

� � RT 1�
I

erfðbðV i � aiÞÞ
� �

8
�
I ðai � c0iÞe�b2ðV i�aiÞ2

8
ffiffiffi
p
p

b

2
664

3
775;
ð10Þ

c0ic
000
j

��
i6¼j
¼ �

J
� �

e�b2ðV j�ajÞ2

8
ffiffiffi
p
p

b
1�

K
erfðbðV k � akÞÞ

� �
ðV i � c0iÞ 1�

I
erfðbðV i � aiÞÞ

� �
�
I e�bðV i�aiÞ2ffiffiffi

p
p

b

" #
: ð11Þ
The diagonal component, c0ic
000
i , is similar to that of the flux splitting method (differing by a factor of 1/4 and the

leading terms involving the error function). However, the significant difference is that the new splitting scheme
has introduced non-zero off-diagonal, or shear, components. Note that the second term within the square brack-
ets in Eq. (10) vanishes if, as previously discussed, the stream velocity is used for the splitting velocity.

By similar means, the pseudo heat flux can be derived:
c0iðV 2 þ 3RT � c2Þ ¼ Eii þ Eij þ Eik ð12Þ

Eii ¼ 1�
J

erfðbðV j � ajÞÞ
� �

1�
K

erfðbðV k � akÞÞ
� �

�
V iRT 1�

I
erfðbðV i � aiÞÞ

� �
4

2
664

�
I e�b2ðV i�aiÞ2

8
ffiffiffi
p
p

b
½ðc0i � aiÞðV i þ aiÞ �RT � ; ð13Þ

3
775
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Eij ¼ �
J

� �
ðV j þ ajÞ

e�b2ðV j�ajÞ2

8
ffiffiffi
p
p

b
1�

K
erfðbðV k � akÞÞ

� �
ðV i � c0iÞ 1�

I
erfðbðV i � aiÞÞ

� �
�
I e�b2ðV i�aiÞ2ffiffiffi

p
p

b

" #

¼ ðV j þ ajÞc0ic000j ; ð14Þ

Eik ¼ �
K

� �
ðV k þ akÞ 1�

J
erfðbðV j � ajÞÞ

� �
e�b2ðV k�akÞ2

8
ffiffiffi
p
p

b
ðV i � c0iÞ 1�

I
erfðbðV i � aiÞÞ

� �
�
I e�b2ðV i�aiÞ2ffiffiffi

p
p

b

" #

¼ ðV k þ akÞc0ic000k : ð15Þ
Eq. (13) will also be simplified by using the stream velocity for the splitting velocity, eliminating the product
(c0i � ai)(Vi + ai). Degenerate forms of Eqs. (10)–(15) are easily developed for lower dimensions. For example,

if 2D simulations are desired then the terms involving 1�
Z

erfðbðV z � azÞÞ
� �

are replaced by the constant 2

and exponential terms arising from the z-dimension vanish, e.g., exp(�b2(Vz � az)
2) = 0, this degenerate form

may be called the Quadrant Method. For 1D simulations, the same arguments lead to the recovery of the flux
splitting method of Sun and Boyd [22]. Finally, the zero-dimensional form recovers the local thermal equilib-
rium method also presented in [22]. That the LTE is a zero-dimensional form of the general octant method
provides additional insight into the poor performance of the LTE.

Consider now an initially stationary two-dimensional gas bounded on the lower side by a surface whose
temperature varies linearly, with Tw increasing in the positive x-direction. Furthermore, we assume that the
gas is in thermal equilibrium with the boundary, such that the same temperature gradient is present in the
gas. As the gas is assumed to be stationary, one may assume that the preserved velocities of all particles
are also zero, however, some thermal modality exists due to the temperature gradient: particles arriving from
different locations will have different temperatures. We now construct the c0c000 tensor as
c0c000 ¼
RT=4 �RT =2p 0

�RT=2p RT=4 0

0 0 RT =4

2
64

3
75

NW

þ
RT=4 RT=2p 0

RT=2p RT =4 0

0 0 RT=4

2
64

3
75

NE

þ
RT=4 RT =2p 0

RT =2p RT=4 0

0 0 RT =4

2
64

3
75

SW

þ
RT=4 �RT=2p 0

�RT=2p RT =4 0

0 0 RT=4

2
64

3
75

SE

ð16Þ
where the subscripts NW, NE, SW, and SE indicate the four splitting directions as compass directions, and T
indicates the average IP temperature of the molecules in each splitting direction. Near the surface, molecules
moving in the NW and NE directions are likely to have recently encountered the surface and will have approx-
imately the same preserved temperature (see Fig. 3). As such, the shear terms from these classes (NW and NE)
cancel ð�RT NE=2pþ RT NE=2p ¼ 0Þ. However, particles moving SW (coming from a higher temperature re-
gion ) will tend to have higher temperatures than those moving SE, resulting in net shear components
Conceptual diagram of quadrant method within a computational cell near a boundary. Particles are separated into four quadrants:
W, SE, SW over which the correlation coefficients are evaluated and summed to form the composite distribution.
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RðT SW � T SEÞ=2p (see Fig. 3). Thus, the octant splitting method provides a mechanism for recovering shear
components of momentum from the preserved thermal energy, even in a stationary gas. The stationary flow
assumption allows Eqs. (7) and (8) to be simplified as Eq. (16) but the identical simplified result is obtained for
non-stationary flow if the stream velocity is uniformly preserved, i.e., Vi = c0. In practice, the general forms of
Eqs. (7) and (8) are used to calculate the pseudo stress terms for uniform and non-uniform flow fields and will
naturally degenerate in the presence of symmetric flows —automatically accounting not only for uniformity,
but also degenerate forms arising from any natural symmetries.

Up to this point it would seem that the global coordinate system may be used to determine splitting classes
and evaluate the fluxal terms. For the current problem, this assumption would be adequate, as one of the glo-
bal coordinates coincides with the thermal gradient. For general thermally driven problems, the splitting direc-
tions should be chosen such that one of the coordinate directions is oriented in the direction of the local
thermal gradient. This will facilitate capturing the effect of the thermal modality on the momentum. A choice
that approximates this and is more generally applicable is to use the sampled heat flux vector. This provides
the first of the direction cosines. In 2D, the projection of the heat flux vector on the x–y plane should be used
as the first direction cosine and the second may be selected normal to the first. In 3D the choice of the second
and third directions seems arbitrary provided that they are mutually orthogonal to the first direction cosine,
but further study is needed to verify this assumption. We may now summarize the steps of the Octant flux
splitting method:

1. Determine the local coordinate system from the local heat flux vector, q and construct the transformation
matrix, R composed of column vectors defining the local coordinate system.

2. Perform a coordinate transformation on the stream velocity, splitting velocity, and the individual micro-
scopic and IP velocities (e.g., c* = RTc).

3. Calculate the correlation coefficients ðc0kc000j Þ
� and ðc0kðV 2 þ 3RT � c2ÞÞ� for each simulation molecule and

average over the molecules in each splitting direction. Sum the contributions from each splitting direction
to obtain the complete correlation coefficients.

4. Return the correlation coefficients to the global coordinate system,
c0kc000j ¼ Rðc0kc000j Þ
�
RT ; ð17Þ

c0kðV 2 þ 3RT � c2Þ ¼ Rðc0kðV 2 þ 3RT � c2ÞÞ�: ð18Þ
5. Proceed with modification step of IP-DSMC (Eqs. (1)–(3)) and sample steps (including Eqs. (4) and (5)).

5. Results

5.1. Benchmark simulation: thermal Couette flow

Before presenting simulation results for thermal transpiration, we first benchmark the octant flux splitting
method for the simple 1D thermal Couette flow problem. This consists of two stationary parallel surfaces
maintained at different temperatures and bounding the working gas. We apply parameters corresponding
to those used by Sun and Boyd, namely: the surfaces are maintained at 173 K and 373 K with a 1 m gap
between them and the intervening space is filled with Argon at various densities, such that the Kn = 0.01,
0.1, 1, 10, and 100 [20,22]. The 1D computational domain is discretized with 100 cells and a total of 10,000
simulation molecules are used.

Figs. 4 and 5 present the temperature profiles and heat flux results of these analyses, comparing the IP-
DSMC results with the results of the underlying DSMC simulations. From these, we can observe excellent
agreement for the wide range of Knudsen numbers. There is some small discrepancy in the heat flux at high
Kn that becomes apparent in the log-scale plot. This may be a consequence of the IP collision model, the
parameters of which were originally developed for the ‘‘additional energy’’ model of Sun and Boyd [20]. These
results do agree well with published results, of note, those from the flux splitting method reported in reference
[22]. This is not surprising as the OSIP-DSMC should degenerate to the flux splitting method in 1D.



Fig. 4. Temperature profiles for thermal Couette flow for OSIP-DSMC and DSMC.

Fig. 5. Heat transfer profiles for thermal Couette flow for OSIP-DSMC and DSMC simulations of Argon at Kn = 0.01, 0.1, 1, 10, and
100.
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5.2. OSIP-DSMC simulation of thermal transpiration

We now return to the problem of thermal transpiration using the geometry, initial and boundary conditions
described previously. The IP-DSMC simulation (and underlying DSMC) where allowed to run for 60,000
timesteps prior to beginning sampling. The simulations then proceeded for and additional 288,000 timesteps
accumulating 24,000 samples. The temperature profiles within the gas in both the DSMC and OSIP-DSMC
simulations follow the linear temperature distribution imposed by the boundary conditions (see Figs. 6 and
7). Again, the DSMC simulation predicts a static pressure gradient as shown in Fig. 8. However, unlike
the flux splitting method, the octant splitting method also predicts a static pressure gradient (see Fig. 9).
The magnitudes of the OSIP-DSMC pressure gradient varies from 100.447 kPa to 103.239 kPa, which com-
pares well with the DSMC pressure gradient of 100.110–103.688 kPa. Slight variations in the pressure distri-
bution may be observed in both simulations near the corners of the channel.

Important features of the velocity fields are presented Figs. 10 and 11. Figs. 10a and 11a present the flow
fields for the entire channel (Note: for clarity the number of data points has been reduced by a factor of four)
for the DSMC and IP-DSMC, respectively. Figs. 10b and 11b (Figs. 10d and 11d) plot the details of the veloc-
ity field at the leftmost (or rightmost) 0.6 lm of the channel, wherein the recirculatory flow is readily apparent,
as is the significant noise reduction in the OSIP-DSMC results. Figs. 10c and 11c present the distribution of
the x-component of velocity as a function of transverse position averaged over the portion of the channel from
Fig. 6. DSMC temperature distribution for 5 lm · 1 lm thermal transpiration microchannel.

Fig. 7. OSIP-DSMC temperature distribution for 5 lm · 1 lm thermal transpiration microchannel.



Fig. 8. DSMC pressure distribution for 5 lm · 1 lm thermal transpiration microchannel.

Fig. 9. OSIP-DSMC pressure distribution for 5 lm · 1 lm thermal transpiration microchannel.
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1 lm to 4 lm. The error bars represent 1 standard deviation in the spatial averages hV xi and hcxi, which have
maximum values of 0.0049 and 0.2275 m/s, respectively. (note: the very small error bars in Fig. 11c are virtu-
ally obscured by the velocity profile). The DSMC would require significantly more samples to achieve the res-
olution obtained by the OSIP-DSMC. The maximum velocity observed in the OSIP-DSMC is 0.872 m/s and
occurs near the wall.

Additional simulations were performed for thermal transpiration systems subject to the same loading, but
with channel widths of 100 nm and 20 nm. The pressure profiles for these, as well as the 1 lm wide channel are
presented in Table 1 and Fig. 12. As an additional point of comparison, the linearized BTE solution for the
thermal transpiration problem proposed by Sharipov [26,27] is included. Considering the different modeling
techniques and the obvious noise remaining in the DSMC results, the correspondence between the three mod-
els is quite good and demonstrates the ability of the OSIP-DSMC to provide detailed information of all flow
characteristics at a substantially lower computational expense than the DSMC.

5.3. Simulations of flows arising from temperature discontinuities

We considered two additional problems arising from thermal loading, both dealing with temperature
discontinuities on the boundary of a sealed 2-D domain. The first was described by Aoki et al. and



a
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Fig. 10. Thermal transpiration: DSMC velocity distribution: (a) full channel (reduced data set); (b) leftmost 0.6 lm (full data set); (c)
velocity distribution averaged over channel from 1 mm to 4 lm (error bars indicate one standard deviation); (d) rightmost 0.6 lm (full
data set).
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consists of a 1 lm square domain with the right and left halves of the boundary assigned different tem-
peratures (T1 = 200 K and T2 = 400 K) such that temperature discontinuities are located at the midpoints
of the upper and lower bounds [29] (see Fig. 13). The resulting thermal stresses in the gas drive a rota-
tional flow, symmetric about the horizontal mid-plane of the system, as shown in Fig. 14 [29]. We applied
the OSIP-DSMC to this problem: discretizing the lower half of the domain with 40 cells in the x-direction
and 20 in the y-direction. The cells are initialized with an average of 100 particles per cell and an initial
density such that Kn = 0.2. Figs. 15 and 16 present the DSMC and OSIP-DSMC velocity fields after
600,000 timesteps and a total of 40,000 samples. While the flow was fully developed and resolved in
the OSIP-DSMC much sooner than this, a larger number of samples were performed to obtain the DSMC
solution for comparison. In terms of both velocity distribution and magnitude, the OSIP-DSMC solution
compares well with both the DSMC and the linearized BTE solution of Aoki et al. Note the velocities in
these results have been normalized by the most probable velocity of the gas at T1, i.e., cmp ¼

ffiffiffiffiffiffiffiffiffiffiffi
2RT 1

p
to

allow for direct comparisons with the published results of Aoki et al. The legend arrow in Fig. 14 seems
to be showing an order of magnitude for the flow, whereas we chose to set the legend arrow in Figs. 15
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and 16 equal to the maximum observed velocities. The locations of the maximum velocities are indicated
by grey circles.

The final example again consists of a 1 lm square domain, with three sides maintained at T1 = 200 K and
the fourth at T2 = 400 K (see Fig. 16). The domain was discretized in the same manner as the previous
a

b c d
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Fig. 12. Comparison of thermal transpiration pressure gradients results for 5 l m long microchannels with widths of 1l m, 100 nm, and
Fig. 13. Split box problem consist of a 2D sealed region, 1 mm square. Thermal boundary conditions are applied as shown such that there
is a discontinuity at the midpoints of the upper and lower bounds. Simulations modeled the lower half of the domain.
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problem but with different boundary conditions and initialized with a uniform pressure of 1 atm (correspond-
ing to Kn � 0.1). The results of the DSMC and OSIP-DSMC simulations are presented in Figs. 17 and 18,
respectively. The simulation was stopped after 12,000 samples. While the DSMC is far from convergence,
the flow is fully resolved in the OSIP-DSMC simulation and demonstrates a recirculatory flow with a maxi-
mum velocity of approximately 0.5 m/s (see Fig. 19).

6. Conclusions

Efficient techniques capable of accurately simulating non-equilibrium rarefied gas flows are needed to facil-
itate the analysis and design of a growing number of micro- and nanoscale systems. Many such systems
20 nm simulated with DSMC, OSIP-DSMC, and linear BTE models.



Fig. 14. Split box: velocity field (reference solution, Aoki et al. [29]).

Fig. 15. Split box: OSIP-DSMC velocity field.

Fig. 16. Split box: DSMC velocity field.
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involve low-speed flows generated by thermal gradients. Conventional DSMC simulations may be prohibi-
tively expensive and other methods may not be satisfactory when applied to strongly non-equilibrium systems.
The IP-DSMC method is an attractive solution, improving the efficiency of the DSMC while maintaining
much of the flexibility and ease of implementation. However, although there have been considerable advances
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Fig. 17. Thermal cavity problem consists of a 2D sealed region 1 lm square domain with constant temperatures applied to the sides as
shown. Simulation modeled lower half of the domain.

Fig. 18. Th

Fig. 19. Thermal cavity OSIP-DSMC velocity field.
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in the IP-DSMC, we have demonstrated that previous methods are unable to capture the behavior of thermal
transpiration and identified the key cause, i.e., the failure to represent the asymmetric velocity distribution of
the cell. By further splitting of the velocity space, the Octant Splitting IP-DSMC recaptures some of the infor-
mation regarding the non-equilibrium velocity distribution that would otherwise be lost. We have also shown
ermal cavity DSMC velocity field.
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that the method degenerates naturally to a quadrant splitting method in 2D and the flux splitting (1D) and
local thermal equilibrium (0D) methods of Sun and Boyd. Through benchmark 1D problems and comparison
with DSMC and linearized BTE solutions for a number of 2D flows, we have been able to demonstrate the
ability of the OSIP-DSMC to accurately model much of the behavior arising from thermally driven non-equi-
librium flows. The OSIP-DSMC provides an accurate and efficient method for a wide range of low-speed
flows. Additional work is needed to validate the method for additional flows, including shock fronts, radiom-
eter vanes, and more complex thermal loading, e.g., simulation of heated AFM cantilevers.
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